

The IEEE APCCAS 2010, the 11th biennial Asia Pacific Conference on Circuits and Systems, will be held in Malaysia in the splendid five-star Hilton Kuala Lumpur and Le Meridien Kuala Lumpur hotels with a superb location only a stone's throw away from the shopping and entertainment hub surrounded by an exciting potpourri from *Truly Asia*, consists of Malay, Chinese, Indian, Eurasian and European. The APCCAS is a major international forum established by the IEEE Circuits and Systems Society for researchers to exchange their latest findings in circuits and systems.

Tutorials: The tutorials will be held on Monday 6th December 2010. Please submit proposals for tutorial sessions to the tutorial chair.

Special sessions: Proposals are solicited for special sessions. Please submit proposals for special sessions to the special sessions chair.

Paper submissions: Complete 4-page manuscript (in standard IEEE double-column format), including title, authors' names, affiliations and e-mail addresses, and a short abstract are requested. Papers must be submitted electronically in PDF format. Only electronic submission will be accepted. For detailed information, please consult the conference website: http://www.apccas2010.org

The IEEE APCCAS 2010 is a meeting place for scholars, scientists, educators, students, engineers, entrepreneurs and managers. It covers a wide range of topics including, but not limited to the following:

Conference Focus Topics

- Analog Signal Processing
- Biomedical Engineering
- Blind Signal Processing
- Cellular Neural Networks and Array
 Computing
- Circuits and Systems for Communications
- Circuits and Systems Education and Outreach
- Computer-Aided Network Design
- Digital Signal Processing
- Life-Science Systems and ApplicationsMultimedia Systems and Applications

Important Dates

Deadline for submission of Tutorial Proposals: Deadline for submission of Special Sessions Proposals: Notification of acceptance of Tutorial Proposals: Notification of acceptance of Special Sessions Proposal: Deadline for submission of Full 4-page Papers in Regular Sessions: Deadline for submission of Full 4-page Papers in Special Sessions: Notification of Paper Acceptance: Deadline for submission of FINAL Papers: Deadline for Author and Early-Bird Registration: Conference Dates:

Nanoelectronics and Gigascale Systems

- Neural Systems and Applications
- Nonlinear Circuits and Systems
- Power Systems and Power Electronic Circuits
- Sensory Systems
 - Visual Signal Processing and Communications
- Test Technology
- System-on-Chip (SOC)
- Packaging
- MEMS Technology

Keynote Speakers

Randall Geiger Iowa State university

Shoji Kawahito Shizuoka University

Ljiljana Trajkovic Simon Fraser University

Ramesh Harjani Universi<mark>ty o</mark>f Minnesota

David Skellern National Information and Communications Technology Australia LTD

Bin-Da L<mark>iu</mark> Nationa<mark>l Che</mark>ng Kung University

N R Nara<mark>yan</mark>a Murthy Infosys Technologies Limited

Technical Committee

Pau-Choo Chung National Cheng Kung University, Taiwan

Nam Ling Santa Clara University, USA

Gerald Sobelman University of Minnesota, USA

P Raveendran, University of Malaya, Malaysia

General Chair

Sudhansu Shekhar Jamuar University Malaya, Malaysia Email: ssjamuar@um.edu.my

Hotel Venue

http://www.apccas2010.org secretariat@apccas2010.org

2010 IEEE Asia Pacific Conference on Circuits and Systems

Circuits and Systems Scaling to Nanotechnology December 6 - 9, 2010 Kuala Lumpur, MALAYSIA

Oral Presentation Schedule								
DAY 2: Tuesday, 7th December 2010 Sentral Ballroom A (Hilton Kuala Lumpur) Analog Sinal Processing								
							T	Session Chair:
						14.00 pm - 14.20 pm	1569317431	Versatile High Input Impedance Voltage-Mode Three-Inputs Universal Biquadratic Filter
14.20pm - 14.40 pm	1569326681	A Tunable Transconductor With High Linearity						
		Vijaya Bhadauria ; Krishna Kant ; Swapna Banerjee						
14.40 pm - 15.00 pm	1569327805	An Unconditionally Stable Voltage Regulator						
45.00	4500000770	Paulo Crepaldi ; Tales C Pimenta ; Robson Moreno ; Edgar Rodriguez						
15.00 pm - 15.20 pm	1569328773	A New Offset Cancelled Latch Comparator for High-Speed, Low-Power ADCs						
15.20 pm - 15.40 pm	1569328963	Low Power Chopper Amplifier Without LPF						
-		Xiao Yang; Chaodong Ling						
Se	ntral Ballro	om A (Hilton Kuala Lumpur) Analog Sinal Processing II						
		Session Chair:						
16.00 pm - 16.20 pm	1569330471	Indirect Current Feedback Instrumentation Amplifier for Current Sensing						
10.20	4500004007	Fuding Ge						
16.20pm - 16.40 pm	1569334807	High-Speed Low-Power Single-Stage Latched-Comparator with Improved Gain and Kickback Noise Rejection						
46.40	4500005074	Sarang Kazeminia ; Morteza Mousazaaen; Knayrollan Haalal ; Abaollan Knoel						
16.40 pm - 17.00 pm	1569335671	A 25MH2 Sign and Magnitude Converter for Analog Current Mode Iterative Decoders						
17.00 pm 17.20 pm	1560225697	Ming Yam Lo ; Wing-Hung Ki						
17.00 pm - 17.20 pm	1203222081	Current-Mode Analog CMOS Fuzzy Eogic Controller						
17.20 pm 17.40 pm	1560226087	A Highly Linear Open Lean High Speed CMOS Sample and Held						
17.20 pm - 17.40 pm	1203220087	A righty Linear Open-Loop Righ-speed Civios Sample-and-Roid						
Sentra	Ballroom	B (Hilton Kuala Lumpur) Biomedical Circuits and Systems I						
Jentra	Damoon	Session Chair:						
14.00 pm - 14.20 pm	1569320537	A Low-Power Remotely-Programmable MCU for Implantable Medical Devices						
		Xiaoyu Zhang ; Hanjun Jiang ; Xinkai Chen ; Chun Zhang ; Zhihua Wang ; Binjie ZHu						
14.20pm - 14.40 pm	1569328849	Design and Development of a Low Cost EMG Signal Acquisition System Using Surface EMG Electrode						
		Tarn Shi Poo ; Kenneth Sundaraj						
14.40 pm - 15.00 pm	1569329007	FPGA-Based Architectures of Finite Radon Transform for Medical Image De-Noising						
		Afandi Bin Ahmad ; Abbes Amira ; Hassan Rabah ; Yves Berviller						
15.00 pm - 15.20 pm	1569329647	A Wireless Energy Link for Endoscopy with End-Fire Helix Emitter and Load-Adaptive Power Converter						
		Tianjia Sun ; Xie Xiang ; Guolin Li; Yingke Gu ; Xiaomeng Li ; Zhihua Wang						
15.20 pm - 15.40 pm	1569329847	A 77 nW Bioamplifier with a Tunable Bandwidth for Neural Recording Systems						
		Iman Abaspur Kazerouni ; Hadi Goodarzi Dehrizi ; Sayed Mohammad Mostafavi Isfahani ; Zhuo Zou ; Majid						
		Bagnaei-wejaa ; Li-kong Zneng						
Sentra	Ballroom	R (Hilton Kuala Lumpur) Biomedical Circuits and Systems II						
Schild		Session Chair:						
16.00 pm - 16.20 pm	1569329859	An Ultra-Low Power Multi-Tunable Triangle Wave Generator with Frequency and Amplitude Control						
		Sayed Mohammad Mostafavi Isfahani ; Iman Abaspur Kazerouni ; Zhuo Zou ; Majid Baghaei-Nejad ; Li-Rong						
46.20	450000000	Zheng						
16.20pm - 16.40 pm	1569335837	A Power Efficient Programmable Gain Boosting Current Mirror for Biomedical Electronics						
46.40	450000000000000000000000000000000000000							
16.40 pm - 17.00 pm	1569336279	Low-Noise Amplifier Path for Ultrasound System Applications						
17.00 pm 17.30 pr	1560220227	Juyung Youn ; Jinseok Kon ; Seok Lee ; Jaenoon Kim ; Namjin Song ; Joongho Choi						
1/00000 - 1/200m	1 100933933/	IL WISE FUNALLEURIDUE FOLDE USING FUTER LAS INF BIO-MEDICAL SENSOF ADDILCATIONS						

		Woojae Lee
17.20 pm - 17.40 pm	1569320521	Characterization of Endothelial Cells Using Electrochemical Impedance Spectroscopy
		Fei Liu; SM Arifuzzaman ; Anis Nordin ; David Spray ; Ioana Voiculescu
	•	
4	Accord Net	work Room (Hilton Kuala Lumpur) Test Technology I
		Session Chair: Combining Unspecified Test Data Bit Filling Methods and Pup Length Pased Codes to Estimate Compression
14.00 pm - 14.20 pm	1569315333	Power and Area overhead
		Usha Sandeep Mehta ; K S Dasgupta ; Niranjan Devashrayee
14.20pm - 14.40 pm	1569327697	ADC Linearity Test Signal Generation Algorithm
		Satoshi Uemori ; Takahiro Yamaguchi ; Satoshi Ito ; Yohei Tan; Haruo Kobayashi ; Nobukazu Takai ; Kiichi Niitsu
14.40 pm - 15.00 pm	1560227727	; N. Ishikawa A Design Platform for Analog Device Size Sensitivity Analysis and Visualization
14.40 pm 15.00 pm	1303327727	Diming Ma : Guovona Shi : Alex Lee
15.00 pm - 15.20 pm	1569328215	Jitter Generation and Capture using Phase-Domain Sigma-Delta Encoding
p		Sadok Aouini; Kun Chuai ; Gordon Roberts
15.20 pm - 15.40 pm	1569328623	Built-in Self-Test/Repair Scheme for TSV-Based Three-Dimensional Integrated Circuits
		Hung-Yen Huang ; Yu-Sheng Huang ; Chun Lung Hsu
A	ccord Netv	vork Room (Hilton Kuala Lumpur) Test Technology II
		Session Chair:
16.00 pm - 16.15 pm	1569328889	Testing Techniques for Resistive-Open Defects in Future CMOS Technologies
16.15pm - 16.30 pm	1569329403	Transistor Sizing Analysis Approach for Sub-Threshold Silicon-on-Insulator (SOI) Circuits
20100 pm		Ahui Sun ; Kok Leong Chang ; Kwen Siong Chong ; Bah Hwee Gwee ; Joseph Chang
16.30 pm - 16.45 pm	1569329621	RedSOCs-3D: Thermal-safe Test Scheduling for 3D-Stacked SoC
		Fawnizu Azmadi Hussin ; Thomas Edison C Yu ; Tomokazu Yoneda ; Hideo Fujiwara
16.45 pm 17.00 pm	1560225662	A 9T Subthreshold SRAM Bitcell with Data-independent Bitline Leakage for Improved Bitline Swing and
10.45 pm - 17.00 pm	1303333003	Variation Tolerance
		Qi Li ; Tony Tae Hyoung Kim
17.00 pm - 17.15 pm	1569336307	Non-Preemptive Test Scheduling for Network-on-Chip(NoC) Based Systems by Reusing NoC as TAM
47.45	450000000	Goutam Mali; Suman Das ; Hafizur Rahaman ; Chandan Giri
17.15 pm - 17.30 pm	1569336837	Error Tolerance Methodology for Quantization in JPEG 2000 Encoder
		i a sincing maning , fluing-ren maning , chain cung risa
	A O D (1111)	
Exchange	A & B (Hilt	on Kuala Lumpur) Circuits and Systems for Communications I
14.00 pm - 14.20 pm	1560210282	Session Chair: A. 4.8.Gb/s Mixed-mode CMOS OBSK Demodulator For 60-GHz Wireless Personal Area Networks
14.00 pm - 14.20 pm	1303319283	A 4.8-GD/S MIXEd-HIDde CHOS QESK DEHIDdulator For 00-GH2 Wileless Personal Area Networks
14.20pm - 14.40 pm	1569335665	Design of High Linearity Low Flicker Noise 5.2 GHz Down-Conversion Mixer for Direct Conversion Receiver
		Ramesh K Pokharel ; Haruichi Kanaya ; Youichi Yano ; Mahmoud Ahmed Abdelahany ; Keiji Yoshida
14.40 pm - 15.00 pm	1569336868	A Low Flicker Noise, Highly Linear, Direct Conversion Receiver for 5GHz Wireless LAN
		Mahmoud Ahmed Abdelghany ; Haruichi Kanaya ; Ramesh K Pokharel ; Keiji Yoshida
15.00 pm - 15.20 pm	1569340791	An Electrically Small Meander Line Antenna for Wireless Applications
		Atif Jamil Shaikh
15.20 pm - 15.40 pm	1569320531	A 47-dB Linear CMOS Variable Gain Amplifier using Current Squaring Technique
		Xin Cheng ; Hai-gang Yang
English		
Exchange	A & B (Hilto	on Kuala Lumpur) Circuits and Systems for Communications II
16.00 pm - 16.20 pm	1569325361	Session Chair: A 120dB All CMOS Variable Gain Amplifier Based on New Exponential Equation
10.00 pm 10.20 pm	1303323301	Farhad Sheikhhosseini ; Abdolreza Nabavi
16.20pm - 16.40 pm	1569327845	A Switch Controlled Resistor Based CMOS Programmable Gain Amplifier with DC Offset Cancellation for WSN
		Xiangning Fan ; Da Cheng ; Yangyang Feng
16.40 pm - 17.00 pm	1569334083	Design of Wide Band PVGA for UWB Applications
		Ibrahim Lotfy Abdel-hafez ; Yaser Khalaf ; Fathi Farag
17.00 pm - 17.20 pm	1569336176	A DC-Offset Cancellation Circuit for PGA in Baseband Communication
		Guanzhong Huang ; Yingjie Wu ; Chaoli Zhong ; Pingfen Lin

A 4.8-Gb/s Mixed-mode CMOS QPSK Demodulator For 60-GHz Wireless Personal Area Networks

Duho Kim, Minsu Ko, Kwang-Chun Choi, and Woo-Young Choi

Department of Electrical and Electronic Engineering, Yonsei University 134, Shinchon-Dong, Sudaemoon-Ku, Seoul, Korea.

kimdor@yonsei.ac.kr

Abstract— A mixed-mode QPSK demodulator for 60-GHz wireless personal area network application is demonstrated. The prototype chip realized by 60-nm CMOS process can demodulate up to 4.8-Gb/s QPSK signals at 4.8-GHz carrier frequency. At this carrier frequency, the demodulator core consumes 54 mW from 1.2-V power supply while the chip area is $150 \times 150 \ \mu m^2$. Using the fabricated chip, transmission and demodulation of 1.7-GSymbol/s QPSK signal in 60-GHz link is demonstrated.

Keywords— QPSK, demodulator, 60-GHz, WPAN, CMOS, mixed-mode

I. INTRODUCTION

There are growing interests for 60-GHz wireless personal area networks and the IEEE 802.15.3c standard has been recently released [1]. As the standard supports Gb/s of transmission, realization of efficient wideband demodulators becomes an important task. Although digital demodulators are widely used, the increase in the data rate makes the realizing of required ADCs challenging. The IEEE 802.15.3c specifies the sample rate of 1.7-GSymbol/s [1], and ADCs meeting this requirement consume much power and chip area. We have previously demonstrated the mixed-mode binary-phase-shift keying (BPSK) demodulation scheme using effectively 1-bit sampler, which can save power and chip area significantly [2, 3]. We showed that slicing BPSK signals with a hard limiter produces signals that are essentially NRZ data and, consequently, a mixed-mode clock and data recovery (CDR) structure can be successfully applied for demodulation of BPSK signals [3]. As an extension, we demonstrate a mixedmode QPSK demodulator in this paper. Although 1-bit resolution sampling is not enough for complex digital processing such as frequency domain equalization to avoid degradation from multi-path fading, it relieves the linearity requirement of RF circuits and offers simple structures, which can be advantageous for short-range line-of-sight applications.

II. DEMODULATOR SCHEME

Assuming ω represents the carrier frequency and input data for each I or Q (DI, DQ) have 1 for 'high (H)' and -1 for 'low (L)', the QPSK-modulated signal (MOD) can be represented as

$$MOD = DI \cos \omega t + DQ \sin \omega t.$$

Fig. 1 shows 4 symbols of QPSK-modulated signals in the time domain. Symbols have sine- or cosine-like shapes or their inversions, with 90 degree of phase difference. Slicing QPSK signals with a hard limiter produces signals that are 4-bit NRZ data sequences. Consequently, CDR circuits typically used for NRZ data processing can be applied for synchronizing demodulator clocks to QPSK carrier signals. For each symbol in Fig. 1, two front bits of 4-bit NRZ sequence are the inverted version of the two rear bits, which are identical to input symbols. Consequently, QPSK-modulated signals are demodulated by inverting two front bits. This procedure requires only 1-bit resolution sampling.

Fig. 1 Sliced QPSK symbols in time domain.

Since 4-bit NRZ data sequence is processed by 4-phase parallel sampling structure, quad-rate CDR which uses 4phase sampling clocks is selected for our approach. Fig. 2 shows how a quad-rate CDR phase-tracks QPSK-modulated signals. A quad-rate CDR requires 8-phase clocks (CLK1-4, and their inversions), in which even number clocks (CLK2, CLK4) track transition edges. If rising and falling edges of CLK2 and CLK4 lead NRZ data, CDR makes its clocks slower, and if lag, faster. Then, a quad-rate CDR aligns CLK2 and CLK4 at transition edges of NRZ and, consequently, CLK1 and CLK3 are placed at the center of NRZ bit.

Fig. 3 schematically shows the data detection flow using the mixed-mode QPSK demodulation scheme. For given DI, DQ, and carrier, the modulated signal (MOD) is generated as shown in the figure. After synchronizing with a quad-rate CDR, CLK1 and CLK3 are aligned as shown in the figure. Arrows represent sampling points of CLK1 (solid arrows) and CLK3 (dotted arrows). White arrows are at rising edges, and black arrows are at falling edges of CLK1 and CLK3. SI1 and SQ1 are sampled with CLK1 and CLK3, respectively, at both rising and falling edges. Finally, inverting circled samples of

Fig. 2 Phase-tracking QPSK-modulated signal with quad-rate CDR; (a) clock lead (b) clock lag

Fig. 3 Data detection flow

SI1 and SQ1, which are sampled at rising edges, produces SI2 and SQ2 which are identical to DI and DQ as shown in the figure.

Fig. 4 Block diagram of prototype chip

III. IMPLEMENTATION

Fig. 4 is the block diagram of the prototype chip. Its structure is identical to that of a CDR consisting of a digital phase detector (PD) and analog phase control blocks (VCO, loop filter). In order to demodulate 4.8-GHz QPSK signals with the proposed scheme, 19.2-Gb/s quad-rate CDR capability is required, since there are 4 NRZ bits in one period of the 4.8-GHz carrier. For this, a bang-bang type quad-rate PD in [4] is employed. This PD consists of D-FFs (D1-8), XOR gates (X1-8), and comparators (C1-4). 4-stage ring VCO generates 8 multi-phase clocks (CLK1-4 and their inversions) and two adjacent clocks have 45 degree of phase differences. As shown in the figure, two MUXs (M1-2) are added for demodulation. M1 and M2 use outputs of D-FFs (S1, S3, S5 and S7) to compose double edge triggered flip-flops, and have one inverted input port in order to invert samples at rising edges of clock. Consequently, M1 produces inverted version of S1 when CLK1 is low and S5 when CLK1 is high, and M2 operates similarly with S3, S7 and CLK3. There are two dummy MUXs to match delay for S2, S4, S6 and S8. These are not shown in the figure.

Latches in D-FFs and XOR gates are derived from the MUX circuit. MUXs are realized with the differential current mode logic (CML). The benefit of this is common-mode noise rejection. It also provides high switching speed by current

Fig. 5 Layout of prototype chip

Fig. 6 Eye-diagrams of demodulated data @2.4Gb/s for each I/Q (X: 52ps/div, Y: 100mVdiff/div).

steering. Comparators, after XOR gates in the figure, are implemented with charge pumps. The differential charge pump scheme is employed for high speed operation. The additional benefit is power supply noise immunity from differential topology.

TABLE I Performance of Fabricated Chip

Process	CMOS 60nm Standard
Maximum data rate	4.8Gb/s (total) 2.4 Gb/s (each I/Q)
Carrier frequency	4.8GHz
Area	$\begin{array}{c} 1\times1 \text{ mm}^2 \text{ (including PAD)} \\ 150\times150 \ \mu\text{m}^2 \text{ (demodulator)} \\ 50\times90 \ \mu\text{m}^2 \text{ (VCO)} \end{array}$
Supply voltage	1.2V
Power consumption	113 mW (including 3 CML I/Os) 54 mW (core + VCO)

IV. MEASUREMENTS

The prototype chip was fabricated using 60-nm CMOS technology. Fig. 5 shows the layout of the prototype chip. The chip area of demodulator is $150 \times 150 \ \mu m^2$. To verify the operation of the prototype chip, 2.4-GSymbol/s QPSK signal using 4.8-GHz carrier frequency, which contains 4.8-Gb/s data in total, is generated by the arbitrary waveform generator (AWG). The fabricated chip consumes 54 mW from 1.2-V power supply at this carrier frequency. Fig. 6 shows the eyediagram of demodulated data for each I/Q channel. A single bit of demodulated data consists of 4 samples, which are sampled at rising and falling edges of each 4.8-GHz I/O clock. Samples of demodulated I/Q data are misaligned by 1/4 period of 4.8-GHz clock since I/Q clock has 90 degree of phase difference. Input symbol transitions in "sample4" make two transition lines on the eye-diagram of "data Q". This problem is due to the quantized timing error explained in [2], but it will disappear after CDR. Table I summarizes the performance of the fabricated chip.

The fabricated chip was tested for 60-GHz link, implemented with external components as shown in Fig. 7. 40-dB attenuator models 1-meter of air loss in 60-GHz band using 15-dBi antenna at both Tx and Rx. The whole link has 4.75-GHz bandwidth and gives 12-dB loss. Although a single LO provides RF clocks for both Tx and Rx in the measurement setup, the proposed scheme is capable of tracking the frequency offset which inevitably appears between Tx and Rx in the super-heterodyne scheme. 1.7-GSymbol/s QPSK signal was generated for feasibility test of IEEE 802.15.3c using a band-limited QPSK modulator, which was implemented as shown in Fig. 8. Each of two programmable pattern generators (PPGs) provides data for I or Q channel. Two PPGs have to be synchronized, since phase and frequency mismatch results in undesired symbol transitions in QPSK signals. Low pass filters limit their bandwidth and two mixers convert band-limited data to BPSK

Fig. 7 Measurement scheme of 60-GHz link.

Fig. 8 QPSK modulator implemented using external components

Fig. 9 Measured BER vs. SNR curve of 60-GHz link.

Fig. 10 Eye-diagram of demodulated data in 60-GHz link measurement @ Tx output power 4.6dBm (X: 115ps/div, Y: 100mV/div).

signal with 4.8-GHz LO signals. In one mixer, LO signals are 90° phase-shifted. Finally, combining two BPSK signals produces the desired QPSK signal. Fig. 9 shows the measured BER vs. Tx output power curve. The fabricated chip achieved BER under 10⁻⁶ for larger Tx output power than 4 dBm, and the eye-diagram of demodulated data at this point is shown in Fig. 10. Transition edges of eye-diagram are thick because of the quantized timing error, as mentioned in [2]. The floor appears at 10⁻⁷ of BER, and is due to I/Q mismatches in both Tx and Rx as well as phase noises of both RF and IF clocks. In addition, the required transmission power can be reduced by further optimization of RF link.

V. CONCLUSIONS

A mixed-mode OPSK demodulator for 60-GHz WPAN application is demonstrated. Our scheme saves power and chip area by lowering required ADC resolution. The prototype chip achieves 4.8-Gb/s data rate with 4.8-GHz carrier frequency. 60-GHz link transmitting 1.7-GSymbol/s QPSK signal is successfully demonstrated with the prototype chip.

ACKNOWLEDGMENT

This work was supported by the Seoul Development Institute under the Seoul R&BD Program (NT080542), and the IC Design Education Center (IDEC), Korea. The authors would like to thank Samsung Electronics Company for fabricating the prototype chip.

REFERENCES

- [1] Wireless MAC and PHY Specifications for High Rate WPANs, IEEE Std. 802.15.3c, 2009.
- Duho Kim, Kwang-chun Choi, Young-Kwang Seo, Hyunchin Kim, [2] and Woo-young Choi, "A 622-Mb/s mixed-mode BPSK demodulator using a half-rate bang-bang phase detector," IEEE J. Solid-State Circuits, vol. 43, issue 10, pp. 2284-2292, Oct. 2008.
- Kwang-Chun Choi, Duho Kim, Minsu Ko and Woo-Young Choi, "1-[3] Gb/s mixed-mode BPSK demodulator using a half-rate linear phase detector for 60-GHz wireless PAN applications," IEEE ASSCC proc. of Technical Papers, pp. 357-360, Nov. 2008.
- [4] Jri Lee and Behzad Razavi,, "A 40-Gb/s clock and data recovery circuit in 0.18-µm CMOS technology," IEEE J. Solid-State Circuits, vol. 38, issue 12, pp. 2181-2190, Dec. 2003.