2010 International Soc Design Conference

Conference Information

Papers

SOC

Sponsors

©2010 IEEE. Presonal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Catalog Number: CFP1069E-CDR ISBN: 978-1-4244-8631-1

Technical Support : Kyung Min D&P Co. Phone : 82-2-2269-1849 FAX : 82-2-2269-1846 E-mail : kim1849@korea.com

CDC-41 Window-based image Processing Circuit
Min Shik Seok, Il Seuk Song, Jae Wook Jeon Sungkyunkwan University, Korea·····41
CDC-42 Hardware IP design and FPGA implementation of face-detection engine for various applications
Dongil Han, Jongho Choi Sejong University, Korea42
CDC-43 Cost-efficient implementation of a modem for scale-free uPAN systems
Soonam Yeom, Kwibeom Han and Seongjoo Lee Sejong University, Korea43
CDC-44 Cost-efficient implementation of an MDCM modem for 1Gbps scale-free uPAN systems
Wonsun Yoo and Seongjoo Lee Sejong University, Korea ······44
CDC-45 Implementation of High Performance SoC On-Chip-Network
Seohoon Yang, Byongyong Kim, Chanho Lee Soongsil University, Korea45
CDC-46 1.62 and 2.7 Gb/s Dual-rate Adaptive Equalizer Jinsoo Rhim, Chang-kyung Seong, Wangsoo Kim, and Woo-young Choi Yonsei University, Korea
CDC-47 Efficient Pipelined Architecture Design for H.264/AVC Main Profile Encoder
Juwon Byun, Jinha Choi, Jeyun Yu and Jaeseok Kim Yonsei University, Korea47
CDC-48 A +34dBm IIP3, 6mW Common-Drain Amplifier
Hong Gul Han, Sang Hoon Jung, and Tae Wook Kim Yonsei University, Korea48
CDC-49 H.264 Main Profile Decoder
Jinha Choi, Juwon Byun, Youngjo Kim, and Jaeseok Kim Yonsei University, Korea·····49
CDC-50 Low-complexity Design of PHY/MAC Modem Processor for WiMedia UWB Systems
Sangmin Lee, Taewook Chung, Kilhwan Kim, Chulho Chung, Yongmin Jung and Jaeseok Kim Yonsei University, Korea
CDC-51 6.25-Gb/s Optical Receiver Analog Front-End in a 0.13-µm CMOS Technology
Jin-Sung Youn and Woo-Young Choi Yonsei University, Korea51

1.62 and 2.7 Gb/s Dual-rate Adaptive Equalizer

Jinsoo Rhim, Chang-kyung Seong, Wangsoo Kim, and Woo-young Choi Dept. of Electrical and Electronic Engineering Yonsei University, Seoul, Korea peter@tera.yonsei.ac.kr

I. INTRODUCTION

Since the data rate of communication systems is limited by the channel bandwidth, various techniques have been introduced. Equalization is the most widely used solution for serial link systems in high speed communication. In this paper, an adaptive equalizer is successfully demonstrated through 15m DisplayPort cable at 1.62 Gb/s and 2.7 Gb/s.

II. DESCRIPTION

Figure. 1 shows the overall structure of our equalizer. It consists of two parts: equalizer filter which compensates the degraded high frequency components and the adaptation block which controls the amount of equalization.

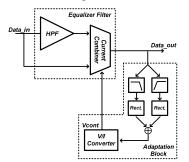


Fig. 1. Block diagram of the adaptive equalizer

A high-pass filter with current combiner boosts up the degraded high frequency components due to the limited channel bandwidth. The current combiner is a current-mode logic (CML) buffer with two different inputs as shown in fig. 2.

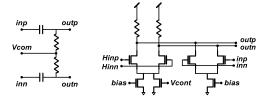


Fig. 2. Schematic of (a) High-pass filter (b) Current combiner

The adaptation block compares high and low frequency components of the signal after the filter and controls the current combiner for proper amount of compensation.

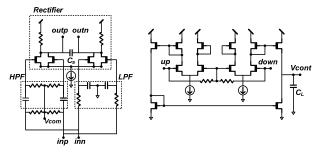


Fig. 4. Schematic of (a) Rectifier (b) V/I converter

III. CHIP IMPLEMENTAION AND RESULTS

The chip is fabricated with $0.13\mu m$ CMOS technology and occupies the area of 115 $\mu m \times 115 \mu m$ and consumes 11mW of power. Figure 4 shows the signal before and after equalizer for 1.62 Gb/s (left) and 2.7 Gb/s (right).

Table 1. Performance summary of fabricated chip

Technology	Chartered 0.13µm CMOS Process
Operation Speed	1.62 Gb/s, 2.7 Gb/s
Power consumption	11mW (excluding output buffer)
Chip Area	115 x 115 μm ²

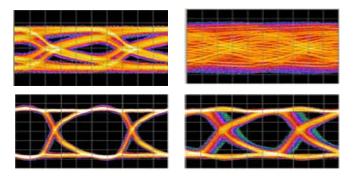


Fig. 4. Eye diagram before and after equalizer

This study was supported by the IT R&D program of MKE/KEIT [KI002145, High Speed Digital Signal Processing based CMOS Circuit Design for next generation Optical Communication], and the EDA Tool was supported by IC Design Education Center (IDEC).