

IEEE Silicon Photonics Conference 4-7 April 2023 • Arlington, VA, USA www.ieee.gfp.org

General Co-Chairs: Haisheng Rong Intel Corporation

Jifeng Liu Dartmouth College

23. 4. 10. 오후 1:08

Programme | 2023 IEEE Silicon Photonics Conference (SiPhotonics) | Ex Ordo

Aussiliants Q sensitivity presentation, sensitivity Augril 2023 Import Name Name Name Name Name Name Name Name	conics 2023 Programme								Log In
Tuesday 4 April 2023 Image: None None None None None None None None	sions Presentations						Q	Search by presen	tation, session or au
Imm Yam Y	Tuesday 4 April 2023								
week week week week week	8am 9am	10am 11am 1	12pm 1pm	2pm 3pm	4pn	n 5pm	6pn	n 7pm	8pm
worke intext intext	Synopsys Workshop: Foundr WS1	B Synopsys Workshop WS2	Lunch (On Your Own)	TuC - Silicon Photonics TuC	в	TuD - Advances in Pa TuD	ssive D		
Wednesday S April 2023 Im Sam 10m 11m 12m 1pm 2m 3pm 4pm 5pm 6pm 7pm Bm Workinggreeduaters and Win Win Winder Own <	Keynote Oral Post	er Session Event					View	<u>Tuesday, 04 Ap</u>	<u>r in detail >></u>
Supplications Supplications <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Sam S	Wednesday 5 April 2023								
Team Team <th< td=""><td>8am 0am</td><td>10am 11am 1</td><td>12am 1am</td><td>Jam 2am</td><td>400</td><td>- Form</td><td>600</td><td>700</td><td>90 m</td></th<>	8am 0am	10am 11am 1	12am 1am	Jam 2am	400	- Form	600	700	90 m
m m	WA - Integrated Lasers and	B WB - Photonics for	Lunch (On Your Own)	WC - Photonic Integration a	в	WD - Photonic Integ	ration a	Poster & Welcome	
8am 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm Th - Photodetectors B ThB - Photonics for Lunch (0n Your 0wn) ThC - Sicesn and MIR Photo B ThD - Modulators Post-Deadl	Thursday 6 April 2023								
ThA - Photodetectors B ThB - Photonics for Lunch (On Your Own) ThC - SiGeSn and MIR Photo B ThD - Modulators Post-Deadl Post-Deadl Keynote Oral Poster Session Event View Thursday, 06 Apr in detail >> Friday 7 April 2023 8m 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm Fa - A Special Session B FB - Silicon Photonic Lunch (On Your Own) FC - Optical Sensing B FD - Photonic I Cl Lunch (on Your Own) FC - Optical Sensing B FD - Photonic I Cl Lunch (on Your Own) FC - Optical Sensing B FD - Photonic I Cl Lunch (on Your Own) FC - Optical Sensing B FD - Photonic I Cl Lunch (on Your Own) FC - Optical Sensing B FD - Photonic I Cl Lunch (on Your Own) FC - Optical Sensing B FD - Photonic I Cl Lunch (on Your Own) FC - Optical Sensing B FD - Photonic I Cl Lunch (on Your Own) FC - Optical Sensing B	8am 9am	10am 11am [.]	12pm 1pm	2pm 3pm	4pn	n 5pm	6pn	n 7pm	8pm
Keynote Oral Poster Session Event Friday 7 April 2023 8am 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm FA - A Special Session B FB - Silicon Photoni Lunch (On Your Own) FC - Optical Sensing B FD - Photonic I Cl duite	ThA - Photodetectors ThA	B ThB - Photonics for ThB	Lunch (On Your Own)	ThC - SiGeSn and MIR Photo ThC	в	ThD - Modulators ThD		Post-Deadl PD	
Friday 7 April 2023 8em 9em 10em 11em 12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm FA - A Special Session B FB - Sliticon Photonic Lunch (On Your Own) FC - Optical Sensing B FD - Photonic I CI CI									
Sam 9am 10ar 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm FA - A Special Session B FB - Silicon Photonia Lunch (On Your Own) FC - Optical Sensing FC B FD - Photonic I Cl	Keynote Oral Post	er Session Event					<u>View 1</u>	<u>Դhursday, 06 Aբ</u>	r in detail >>
FA - A Special Session B FB - Silicon Photoni Lunch (On Your Own) FC - Optical Sensing B FD - Photonic I CI	Keynote Oral Post	er Session Event					<u>View 1</u>	<u>"hursday, 06 Ар</u>	r in detail >>
	Keynote Oral Post	er Session Event	2pm 1pm	2pm 3pm	4pn	n Spm	View]	Thursday, OG Ap	r in detail >> 8pm
	Keynote Oral Post Friday 7 April 2023 8am 9am FA- A Special Session FA FA Oral Poster	er Session Event	l2pm 1pm Lunch (On Your Own)	2pm 3pm FC - Optical Sensing FC	4pn B	n Spm FD - Photonic I FD	View 1	n 7pm	r in detail >> 8pm r in detail >>

A Si Photonic BiCMOS Coherent QPSK Transmitter Based on Parallel-Dual Ring Modulators

Youngkwan Jo¹, Yongjin Ji¹, Minkyu Kim², Hyun-Kyu Kim¹, Min-Hyeong Kim³, Stefan Lischke⁴, Christian Mai⁴, Lars Zimmermann^{4,5} and Woo-Young Choi¹

1. Yonsei University, 03722, Seoul, South Korea

2. Formerly at Yonsei University when this work was done, now at IMEC, 3001 Leuven, Belgium

3. Formerly at Yonsei University when this work was done, now at Samsung Electronics, Hwasung, 18448, South Korea

4. IHP – Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (O.), Germany

5. Technische Universität Berlin, Einsteinufer 25, 10587 Berlin, Germany

wchoi@yonsei.ac.kr

Abstract— A monolithic Si photonic coherent optical QPSK transmitter is demonstrated that contains parallel-dual ring modulators and the BiCMOS driver electronics. It achieves 3.1 x 10⁻⁴ BER 25-Gbaud QPSK operation.

Keywords—optical QPSK transmitters, photonic BiCMOS, ring modulators

I. INTRODUCTION

Coherent optical transceivers have shown a great amount of performance progress over the past few decades with the everincreasing digital signal processing (DSP) capability and the emerging photonic integration technology [1]. The signal impairment during the long-haul and metro transmission due to carrier phase noise, chromatic dispersion (CD), and polarization mode dispersion (PMD) can be recovered thanks to the smart and efficient DSP algorithms, and several photonic components that are needed for coherent modulation and demodulation can be integrated in a single photonic integrated circuit. With these, transmission capacity and spectral efficiency have significantly increased [2]. For short-reach optical interconnects, which is currently dominated by the pulse amplitude modulation (PAM) optical transceivers, there is an emerging interest for coherent optical transceivers since the PAM technology with such problems as the optical multipath impairment (MPI), the reduced optical modulation amplitude (OMA), and the inherent modulator nonlinearities may not guarantee the continuous performance increase required for the hyper-scale data centers application [3]. In this regard, a 64-Gbaud multiband monolithic Si photonic BiCMOS coherent optical receiver has been demonstrated [4] based on the photonic BiCMOS technology which can provide high-speed SiGe HBT electronics along with high-performance Si photonic components in a monolithic manner [5]. In addition, a full 56-Gbaud O-band coherent transceiver for intra data center optical interconnects has been demonstrated by the hybrid integration of electronics and photonics with a record-high 64-Gbaud O-band coherent transmitter [6]. In this paper, we report a single-polarization 50-Gbps coherent optical quadrature phase shift keying (QPSK) transmitter implemented on the Si photonic BiCMOS

technology platform. The transmitter contains parallel-dual ring modulators (RMs) and BiCMOS driving electronics. The approach based on the RMs is pursued as they can result in the much smaller chip size, which is becoming an important factor of consideration for photonic I/O applications [7].

II. DEVICE DESCRIPTION AND MEASUREMENT

Fig. 1. Schematic of Si photonic BiCMOS coherent QPSK transmitter.

Fig. 1 shows the schematic of coherent QPSK transmitter. Input optical signal is divided into two branches by 1 x 2 multimode interferometer (MMI), and the two RMs are located in each arm of Mach-Zehnder interferometer (MZI) structure as parallel-dual RMs. The RMs are designed to have the overcoupling condition, which can have 2π phase shift near the resonance wavelength. The RMs are driven by the integrated

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C2015089). Also, we thank IC Design Education Center (IDEC) for EDA tool support.

driver composed of emitter followers (EFs) and fully differential cascode amplifiers as shown in Fig. 1, which delivers the desired V_{π} . The thermo-optic heaters are integrated in the directional coupler region of the RMs so that the RM resonance wavelengths can be tuned. Phase shifters are also integrated in the two arms of MZI to adjust the arm length difference. The divided optical signals are combined in the 2 x 2 MMI with the 90-degree phase shift, which enables the two RMs to have a quadrature phase difference and generate QPSK signals.

Fig. 2. Micro photo of fabricated chip and measurement setup

Fig. 2 shows the micro photo of the fabricated chip and the measurement setup. The device is fabricated by IHP's 0.25-µm Si photonic BiCMOS platform (SG25H4 EPIC). The integrated RMs have 16-µm radius, 220-nm coupling gap and 500-nm waveguide width, and their nominal peak carrier concentrations are $7 \ge 10^{17}$ /cm³ for p-region and $3 \ge 10^{18}$ /cm³ for n-region. From the measurement of identical RM in the same die reveals that the RMs have the over-coupling conditions with V_{π} of 5.7 V and 12.2-dB insertion loss for the BPSK modulation. The 25-Gbps nonreturn-to-zero (NRZ) signals having 700 mVpp,diff are supplied from the arbitrary waveform generator (AWG) whose sampling rate is 25 Gs/s and analog bandwidth is 13.5 GHz by GSGSG probes so that -3 V_{dc}, 5.7 V_{pp,diff} signals can be delivered to each RM. For the generation of QPSK signals, the halfpattern-length-shifted pseudo random bit sequence 7 (PRBS-7) is used in the measurements.

A pair of grating couplers (GCs) is used as an optical IO for the measurement. The resonance wavelength difference of RMs and arm length difference of MZI are compensated by the integrated RM heater and the phase shifter, and their power consumptions are 0.85 mW and 19.4 mW, respectively. The input optical is split into one for the coherent QPSK transmitter and the other for the local oscillator (LO) port of commercial coherent receiver to have a homodyne reception of modulated signal. The output QPSK signal is amplified by erbium-doped fiber amplifier (EDFA) and filtered by a tunable optical bandpass filter (OBPF), and finally injected into the coherent receiver. The output signals (I+ and Q+) of coherent receiver are acquired by a real-time oscilloscope for the off-line DSP whose sampling rate is 80 GS/s and analog bandwidth is 33 GHz. For off-line processing, recursive-least-square blind equalizing and carrier phase estimation and bit-error rate calculation are performed [1,8].

Fig. 3. Constellation after off-line DSP for (a) 10-Gbaud QPSK and (b) 25-Gbaud QPSK signals.

Fig. 3(a) and (b) show the measured constellation for 10-Gbaud and 25-Gbaud QPSK signals, respectively. The BER is 2 x 10^{-5} for 10-Gbaud and 3.1 x 10^{-4} for 25-Gbaud, which are below the forward error correction (FEC) limit (3.8 x 10^{-3}).

III. CONCLUSION

The parallel-dual RMs and driver ICs are monolithically integrated for the single-polarization 50-Gbps coherent optical QPSK transmitter in the Si photonic BiCMOS technology. The RMs are aligned by the integrated thermo-optic components and individually driven by the integrated driver electronics, generating the BPSK signals and combined with 90-degree phase shift for QPSK signal generation. The BER performances of the device are under the FEC limit, confirming the possibility of Si RMs as coherent optical modulators.

REFERENCES

- [1] Kikuchi, Kazuro. Journal of lightwave technology 34.1 (2015): 157-179.
- [2] Zhou, Xiang, Ryohei Urata, and Hong Liu. Optical Fiber Communication Conference. Optica Publishing Group, 2019.
- [3] Xie, Chongjin, and Bo Zhang. Proceedings of the IEEE (2022).
- [4] Seiler, Pascal M., et al. Journal of Lightwave Technology 40.10 (2022): 3331-3337.
- [5] Lischke, S., et al. Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019. Vol. 11088. SPIE, 2019.
- [6] Aaron Maharry, et al. 2022 European Conference on Optical Communication (ECOC). IEEE, 2022.
- [7] Fathololoumi, Saeed, et al. Journal of Lightwave Technology 39.4 (2020): 1155-1161.
- [8] Dong, Po, et al. Optics letters 37.7 (2012): 1178-1180.