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Abstract  —  We investigate the frequency up- and down-

conversion efficiency characteristics of millimeter-wave 
frequency converters based on cascaded semiconductor 
optical amplifier (SOA) – electroabsorption modulator 
(EAM) configuration. We define internal frequency 
conversion efficiencies and characterize them at 60-GHz as 
functions of EAM bias, optical LO signal power, and optical 
IF signal power and wavelength. 

Index Terms  —  Electroabsorption modulator (EAM), 
frequency conversion, millimeter wave communication, 
optical mixers, radio-on-fiber system, semiconductor optical 
amplifier (SOA). 

I. INTRODUCTION 

Radio-on-Fiber (RoF) systems are very effective to 
realize millimeter-wave wireless systems, which need 
many base stations due to high free space transmission 
loss of millimeter-wave signals [1-3]. Because RoF 
systems can support low loss, broadband data 
transmission and allow centralization of expensive 
equipment, it is possible to design simple and cost 
effective base stations. In addition, it is possible to apply 
optical/optoelectronic techniques for millimeter-wave 
signal generation and processing to RoF systems, which 
can improve system performances and reduce base 
station complexity [1-5]. Especially, the millimeter-wave 
optical/optoelectronic frequency conversion techniques 
have been widely investigated for such purposes [1-5]. 
We have previously proposed frequency up- and down-
conversion techniques using semiconductor optical 
amplifier (SOA) – electroabsorption modulator (EAM) 
configuration, in which SOA cross-gain modulation and 
EAM photodetection are used for frequency up-
conversion, and EAM nonlinearity for frequency down-
conversion [6-7]. 

For electrical frequency converters, important 
specifications are frequency conversion efficiency, 
isolation between RF and LO ports, and intermodulation 
distortions caused by nonlinearity of frequency 
converters [8]. Among them, frequency conversion 
efficiency is essential for RF design of base stations. In 
this paper, we investigate the frequency up- and down-
conversion efficiencies for the SOA-EAM frequency 
converter. The conventional definition of conversion 

efficiency is the RF power ratio between input signals 
and frequency converted output signals. However, it is 
very difficult to directly apply this definition to our 
frequency converters because it is difficult to measure 
exact signal powers related to frequency up/down-
conversion due to many optical components used in the 
scheme. Therefore, we devise a method with which 
frequency up- and down-conversion efficiencies are 
estimated, and measure them as functions of EAM bias, 
optical LO signal power, and optical IF signal power and 
wavelength. 
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Fig. 1. Simple schematics of frequency up-conversion process 
(a), and frequency down-conversion process (b). OBPF : 
Optical BandPass Filter. 
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II. OPERATION PRINCIPLES AND DEFINITION OF 
FREQUENCY CONVERSION EFFICIENCY 

Fig. 1 (a) and (b) schematically show operation 
principles of frequency up- and down-conversion, 
respectively. For frequency up-conversion, both optical 
heterodyne LO signals (λLO) to generate fLO and optical 
IF signals (λIF) carrying fIF signals are injected into SOA. 
Inside SOA, two modes of optical heterodyne signals are 
cross-gain modulated by optical IF signals. After 
photodetection in EAM of optical LO signals, frequency 
up-converted signals at fLO-fIF and fLO+fIF are generated 
as beating products as shown in the fig. 1 (a). Therefore, 
the frequency up-conversion efficiency (ηup) can be 
defined as the EAM photodetected power ratio of 
frequency up-converted signals marked as B in Fig. 1 (a) 
to IF signals before SOA marked as A.  
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Fig. 2. Experimental setup for frequency up/down-conversion 
at 60-GHz-band. EOM : Electrooptic Modulator, DFB : 
Distributed Feedback Laser : RF-SA : RF Spectrum Analyzer, 
PD : Photodetector, OBPF : Optical BandPass Filter, EDFA : 
Erbium Doped Fiber Amplifier. 
 

For frequency down-conversion, optical LO signals 
and optical IF signals are injected into the SOA-EAM 
configuration. During the photodetection process in 
EAM, signals having fLO component are generated inside 
EAM. These signals are frequency mixed with RF signals 
at fRF externally applied to EAM due to EAM 
nonlinearity, which results in frequency down-conversion 
to fLO-fRF. The resulting fLO-fRF signals then modulate 
optical IF signals at λIF in the same EAM, thereby 
frequency down-converted signals can be obtained by the 
photodetection of optical IF signals as shown in the fig. 1 
(b). In this frequency down-conversion process, the 
frequency down-conversion efficiency (ηdown) is defined 
as the photodetected power ratio of frequency down-
converted signals marked as C to EAM modulated RF 
signals marked as D. This definition can eliminate the 
effects of EAM modulation efficiency and photodetector 
efficiency of optical IF signals, indicating internal 
frequency down-conversion efficiency in EAM. The 
details of frequency conversion characteristics and data 
transmission results are reported in [6-7]. 

III. EXPERIMENTS AND RESULTS 
Fig. 2 shows the experimental setup to measure 

frequency up/down-converted signals for calculating 
conversion efficiencies at 60-GHz-band. Optical 
heterodyne LO signals were generated by modulating a 
Mach Zehnder modulator biased at minimum 
transmission point with 30-GHz signals [9]. 100-MHz IF 
signals for frequency up-conversion modulated another 
Mach-Zehnder modulator biased at the quadrature point 
for generating optical IF signals. When these two optical 
signals were combined and injected into the SOA-EAM 
configuration, frequency up-converted signals at 59.9-
GHz and 60.1-GHz were generated as shown in the fig. 3 
(b). The SOA was biased at 150-mA, which provided 25-
dB optical gain and 7-dBm output saturation power. The 
EAM was designed for 60-GHz narrow band operation 
[10], and biased at -2.5-V. For calculating ηup, 100-MHz 
IF signals are measured using the same EAM as a 
photodetector before SOA. Fig. 3 (a) shows the measured 
RF spectrum of 100-MHz signals. Because EAM 
photodetection response has 16-dB difference between 
100-MHz and 60-GHz-band, we corrected this difference 
to calculate ηup. The gain of RF amplifiers was also 
corrected. 
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Fig. 3. RF spectra for frequency up-conversion: (a) IF signals 
without SOA, (b) frequency up-converted signals. The 
resolution bandwidth was 300-kHz for (a) and 100-kHz for (b). 
A 17-dB gain electrical amplifier was used for (b). 
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Fig. 4. RF spectra for frequency down-conversion: (a) 
frequency down-converted signals measured with broadband 
photodetector, (b) EAM modulated RF signals measured with 
the same broadband photodetector. The resolution bandwidth 
was 1-kHz for both. A 20-dB gain electrical amplifier was used 
for (a), and a 17-dB gain electrical amplifier was used for (b). 
 

For frequency down-conversion, 10-dBm 59.85-GHz 
signals modulated the EAM, which were then mixed with 
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photodetected 60-GHz LO signals, resulting in optical IF 
signals modulated with frequency down-converted 150-
MHz IF signals. The spectrum of photodetected optical 
IF signals after optical amplification and bandpass 
filtering is shown in the fig. 4 (a). When optical IF 
signals were photodetected, 59.85-GHz RF signals were 
also generated due to EAM modulation of 59.85-GHz 
signals as shown in the fig. 4 (b). ηdown was calculated 
using these two signals. A broadband photodiode was 
used to measure both frequency down-converted signals 
and RF signals, and the 5-dB difference of frequency 
response between 150-MHz and 59.85-GHz was 
corrected in calculating ηdown. The gain of RF amplifier 
was also corrected. 
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Fig. 5. Dependence of frequency conversion efficiency (ηup and 
ηdown) on EAM bias conditions. 
 

At first, the dependence of frequency conversion 
efficiencies on EAM bias condition was measured. The 
power of optical IF signals at 1550-nm and optical LO 
signals at 1553.3-nm before SOA were -8-dBm and -15-
dBm, respectively. As shown in the Fig. 5, ηup increases 
with increasing EAM reverse bias voltages, because 
photocurrent in EAM increases at high reverse voltages. 
The dependence of photocurrent in EAM on bias 
conditions is the contrary of modulation characteristics, 
so that photocurrent in EAM within this bias range 
increases with reverse bias voltages. However, ηdown 
decreases with increasing EAM reverse bias voltages, 
because EAM nonlinearity is more pronounced at low 
reverse voltages. 

LO power influences the efficiency of frequency 
converters. We investigated the dependence of frequency 
conversion efficiencies on SOA input optical LO power. 
For this measurement, the optical IF power at 1550-nm 
was set at -8-dBm, and EAM was biased at -2.5-V. The 
wavelength of optical LO signals was 1553.3-nm. The 
results were obtained at two different SOA current levels 
in order to see the influence of SOA gain on conversion 
efficiencies. As can be seen in Fig. 6 (a) and (b), both ηup 
and ηdown increase with optical LO power. For ηup, the 
increase is due to square-law beating power increase with 
optical LO signals in EAM. ηdown increases because the 

photogenerated LO signal power in EAM increases with 
optical LO power. In both cases, the slight saturation of 
conversion efficiencies appears at high optical LO power 
conditions due to the SOA gain saturation. When the 
SOA bias increases from 100-mA to 150-mA, both 
frequency conversion efficiencies improve about 10-dB, 
which corresponds to about 5-dB increase in SOA optical 
gain. 
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Fig. 6. Frequency up-conversion efficiency (ηup) (a), and 
frequency down-conversion efficiency (ηdown) (b) as a function 
of optical LO signal power. Optical LO power was measured in 
front of SOA. 
 

Finally, conversion efficiencies were measured as 
functions of optical IF signal power and wavelength. Fig. 
7 shows the conversion efficiency dependence on optical 
IF signal power. The optical LO signal power at 1553.3-
nm was -15-dBm, and the wavelength of IF signals was 
1550-nm. For frequency up-conversion, the conversion 
efficiency decreases with increase of optical IF power. 
This is due to SOA gain saturation, which causes 
decrease of both cross-gain modulation efficiency and 
gain that optical LO signals experience. As shown in Fig. 
7, the conversion efficiency dependence is very similar to 
SOA gain saturation characteristics. For frequency down-
conversion, the increase of optical IF power leads to the 
increase of photodetected power of both frequency down-

109



 4

converted signals and RF signals. Therefore, constant 
conversion efficiency should be maintained. However, at 
high optical IF power conditions, the frequency down-
conversion efficiency is slightly decreased, because the 
optoelectronic mixing at the EAM starts to saturate faster 
than RF modulation in EAM. 

Fig. 8 show the effects of optical IF wavelength on 
frequency conversion efficiencies. The wavelength of -8-
dBm optical IF was changed from 1540-nm to 1560-nm. 
As shown in the figure, the frequency up-conversion 
efficiency is nearly constant over wide optical IF 
wavelength range. This is because the SOA gain 
bandwidth near 1550-nm is wide and cross-gain 
modulation efficiency is saturated with this high optical 
IF power. On the other hand, the frequency down-
conversion efficiency varies about 4-dB. This is because 
the modulation efficiency and frequency mixing in EAM 
are changed at different wavelength conditions. These 
frequency conversion efficiency results show that this 
SOA-EAM frequency converter has wide operation 
wavelength range. 
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IV. CONCLUSION 
We measured and investigated the frequency up- and 

down-conversion efficiencies of SOA-EAM frequency 
converters for bi-directional RoF systems. For our 
purpose, we defined frequency up- and down-conversion 
efficiencies, and measured them as functions of EAM 
bias, optical LO signal power, and optical IF signal 
power and wavelength. We found that the EAM bias 
conditions reversely affect the frequency up- and down-
conversion efficiency. It is also found that the high 
optical LO signal power increases the frequency 
conversion efficiencies until it is saturated by SOA gain 
saturation. On the other hand, high optical IF power 
decreases the frequency conversion efficiency. The 
dependence on input optical IF wavelength was not too 
significant in our experimental conditions. We believe 
that our SOA-EAM frequency converter has enough 
conversion efficiency for bi-directional data transmission. 
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Fig. 8. Frequency conversion efficiencies as a function of SOA 
input optical IF wavelength. 
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