Proceedings of the 13th Conference on Optoelectronics and Optical Communications

COOC 2006

제13회

VOL.13 NO.1

ISSN 1738-2661

광전자 및 광통신 학술회의 논문집

일시 2005년 5월 10일(수) ~ 5월12일(금)

장소 일성부곡콘도

(http://ilsung.ilsungcondo.co.kr/condo/bugok_main.html)

공동주최

OS(한국 광 학 회 ******** [광자기술분과

한 국 통 신 학 회 [광 통 신 연 구 회]

대 한 전 자 공 학 회 (광파 및 양자전자공학연구회)

대 한 전 기 학 회 (광전자 및 전자파연구회)

후 원

한 국 학 술 단 체 연 합 호

Stimulated Brillouin scattering 을 이용한 하모닉 밀리미터파 생성 방법

Harmonic millimeter-wave generation methods using stimulated Brillouin scattering in SMF

이광현*, 최우영 연세대학교 전기전자공학과

Abstract

We propose and demonstrate a novel method for harmonic millimeter-wave generation using stimulated Brillouin scattering (SBS) in optical fiber. In this scheme, we generate 6th harmonic frequency (32.53GHz) with larger than 16dB RF gain based on Brillouin selective sideband amplification induced in 10km long standard single mode fiber.

전기적인 방법으로 만들기 힘든 고주파신호를 생성하는 광 밀리미터파 생성 기술은 생성된 신호에 주파수 상·하향 전환과 같은 신호 처리를 광 도메인에서 쉽게 할 수 있어 국내외적으로 많은 연구가 진행되고 있다. 특히, 원하는 밀리미터파 생성을 위해 그 주파수의 sub-harmonic 을 이용하는 하모닉 주파수 생성 방법은 high-speed 광소자를 사용하지 않는 장점이 있어 cost-effective 한 시스템 제작이 가능하다.

이 하모닉 주파수 생성 방법 중 하나로, 최근 stimulated Brillouin scattering (SBS)을 이용한 방법이 많은 관심을 끌고 있다. SBS 는 Standard single mode fiber 에서도 비교적 낮 은 pumping power 로 생성이 가능하며, 다른 방법과 달리 생성된 하모닉 신호에 RF gain 을 제공하기 때문이다. 하지만, 기존의 방법은 optical pumping 을 위해 추가적인 광원을 필요로 하는 단점을 지니고 있다 [1]. 본 논문에서는 이 단점을 극복하는 새로운 구조의 광 밀리미터파 생성 방법을 제시하고 그 가능성을 검증 하였다.

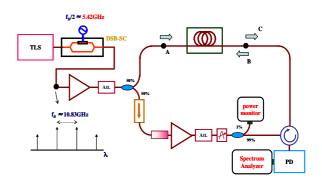


그림 1. 실험 setup

그림 1 은 실험 setup 을 보여 주고 있다.

먼저 tunabe laser source 에서 나온 광 신호는 MZM 에 의해 DSB-SC (double side band with suppressed carrier) 방법으로 Brillouin 주파수의 절반에 해당하는 RF 신호(5.42GHz)로 변조 된다. 이렇게 변조된 광 신호는 3dB 광분배기에 의해 upper arm 과 lower arm 으로 나뉘어지게 되고, lower arm 에서는 하나의 optical mode 만 필터로 선택되어 circulator를 통해 SMF 로 들어가게 된다. 이 신호는 upper arm 을 통하여 들어온 광 신호와 SMF에서 반대 방향으로 진행하며 pumping 역할을하게 된다. 그림 2 는 그림 1 의 A, B, C 지점에서의 광 신호를 보여 주고 있다.

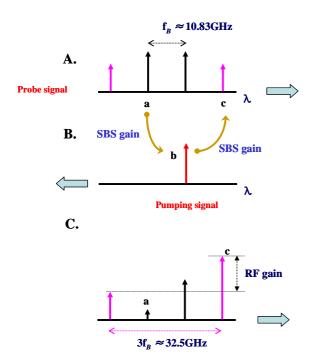


그림 2. A,B,C 지점에서의 광 신호

그림 2 에서 보듯이, SBS 에 의해 b 모드는 c 모드를, 그리고 a 모드는 b 모드를 증폭시키게 된다. 즉 c 모드는 b 모드 pumping 에 의해 SBS gain 을 얻음과 동시에, b mode 를 통해 a 모드의 power 를 전달 받게 된다. 최종적으로는 square law 특성을 갖는 광검출기에서양 끝 모드의 beating 에 의해 원하는 밀리미터파를 생성하게 되는 것이다. 그림 3 은 5.42GHz 의 6th 하모닉 성분인 32.5GHz 신호를 보여 주고 있다. 그림에서 보듯 SBS 증폭에 의해약 16.6dB의 gain을 얻었다.

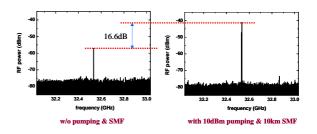


그림 3.6th harmonic 성분

Optical pumping 을 위한 추가적인 독립된 광원을 사용하지 않고, 10km 의 standard SMF에서 발생하는 SBS gain 을 이용하여 5.42GHz 의 6th 하모닉 성분인 32.5GHz 신호를 생성하였다. 생성된 광신호는 두 모드의 power 가 다른 heterodyne 신호이므로, 이신호에 data 를 변조하거나 또는 upconversion 을 하더라도 fiber dispersion 에 의해 발생하는 RF power fading 현상에 매우 robust 하다.

[1] T. Schneider, M. Junker and D. Hannover, et al, "Generation of millimeterwave signals by stimulated Brillouin scattering for radio over fibre systems," *IEE Electronics Lett.*, vol. 40, no. 23, pp. 1500–1502, 2004.