

Introduction

Topic

Wireless Transceiver SOC for 60GHz WPAN

❖ Team member

■ Team member: D.H Kim, J.Y Kim, M.S Ko

• 60GHz LNA: D.H Kim

60GHz Oscillator: J.Y Kim

■ 60GHz Mixer: M.S Ko

■ High Speed MODEM: D.H Kim

Sponsor

■ 한국과학재단 특정기초 연구 - CMOS 기반 60GHz 광대역 송수신기 구현

Introduction

- A network for interconnecting devices centered around an individual person's workspace
- Typical WPAN range < 10m
- IEEE 802.15.3 is one of WPAN standard
 - Data rate: 11, 22, 33, 44 and 55Mbps
 - Ad-hoc peer-to-peer networking
 - Security
 - Low power consumption
 - Low cost

Demands for higher rate transmission (wireless HD video, wireless USB)

Superheterodyne Receiver

Classic Scheme of Demodulator

- QPSK demodulator usually requires at least 4-bit resolution.
- ❖ ADC speed > Nyquist frequency (2X symbol rate)
 - → Gsymbol/s ADC is required!
- ❖ But Gsymbol/s ADC is difficult in CMOS process.
- High speed ADC consumes high power and large area.

Mixed-mode PSK Demodulator

- Sampler is same as a 1-bit ADC.
- ❖ The speed of sampler has already reached 10 times of 4-bit ADC.
 - → Mixed-mode demodulator has high-speed capability.
- ❖ Sampler occupies smaller size and consumes lower power.

Chip#1 - BPSK Demodulator

Process	TSMC 0.18μm
Max. data rate (PRBS 2 ⁷ -1)	622 Mb/s
Carrier frequency	1.4 GHz
Demodulator core area	210 × 150 μm²
Supply voltage	1.8V
Power consumption	22mW (core) 288mW (w/ I/O & PLL)

Chip#2 – QPSK Demodulator

Process	Magnachip/Hynix 0.18 🕮
Maximum data rate	500-Mb/s (each I/Q)
(PRBS 2 ⁷ -1)	1-Gb/s (total)
Carrier frequency	1.7-GHz
Area	2.8 × 2.15 mm ²
	(including PAD)
	0.17 × 0.2 mm ² (core)
	1.7 × 1.7 mm ² (VCO)
Supply voltage	2.5 V
	475-mW (including I/O)
Power consumption	35-mW (core)
	67.5-mW (VCO)

Publication

❖ Journal

■ Duho Kim, Kwang-chun Choi, Young-Kwang Seo, Hyunchin Kim, and Woo-young Choi, "A 622-Mb/s Mixed-mode BPSK Demodulator Using a Half-rate Bang-bang Phase Detector", *IEEE Journal of Solid-State Circuits, in publication*

Conference

- Duho Kim, Kwang-chun Choi, Young-Kwang Seo, Hyunchin Kim, and Woo-young Choi, "A 622Mb/s BPSK Demodulator with Mixed-mode Demodulation Scheme", *IEEE Asian Solid-State Circuits Conference, pp. 288-291, 12-14 Nov. 2007*
- Duho Kim, Woo-young Choi, Young-kwang Seo and Hyunchin Kim, "A Novel BPSK Demod/SOCC 2006, COEX Conference Center, Seoul, Korea, 26~27 Oct., 2006ulating Scheme Using a Half-rate Bang-bang PD",

Publication

Awards

Chip Design Contest Second Prize

Duho Kim, Kwang-chun Choi, Young-kwang Seo, Hyunchin Kim, and Woo-young Choi, "Mixed-mode BPSK Demodulator", 2007 International SoC Design Conference, COEX Conference Center, Seoul, Korea, 15-16 Oct., 2007

Patents

- ■"위상 검출을 이용한 복조 방법 및 그 장치" 김두호, 서영광, 최우영, 김현진 대한민국 특허 제 10-0826248, 미국, 중국, 일본, 유럽 출원 중
- "신호 복조 방법 및 그 장치" 김두호, 최우영 대한민국, PCT 출원 중